MATRIX ORBITAL

VFD2041
 Technical Manual

Revision: 1.0

Contents

Contents ii
1 Introduction 1
1.1 What to Expect From the VFD2041 1
1.2 What Not to Expect From the VFD2041 1
1.3 Setup for Testing 1
1.4 Trying Out the VFD2041 2
2 Connections 2
2.1 Connector Pinout 2
2.1.1 Power Connections 3
2.1.2 Five Volt Modules 4
2.1.3 Wide Voltage Range Modules 5
2.1.4 Applying Power through the DB-9 Connector 6
2.2 RS-232 Communications 6
2.2.1 DB-9 Connections 7
2.2.2 Alternate Serial Connection 7
2.2.3 TTL communications 8
2.2.4 Configuring RS-232 and $\mathrm{I}^{2} \mathrm{C}$ 9
$2.3 \quad \mathrm{I}^{2} \mathrm{C}$ Communications 10
2.3.1 ACK 10
2.4 General Purpose Output 11
3 Displaying Text 13
3.1 General 13
3.2 The Built in Character Font 13
3.3 Writing Text to the Display 14
3.4 Text Commands 15
3.4.1 Auto line wrap on (254 67) 15
3.4.2 Auto line wrap off (254 68) 15
3.4.3 Auto scroll on (254 81) 15
3.4.4 Auto scroll off (254 82) 15
3.4.5 Set cursor position (254 71 [column] [row]) 15
3.4.6 Send cursor home (254 72) 15
3.4.7 Turn on underline cursor (254 74) 16
3.4.8 Turn off underline cursor (254 75) 16
3.4.9 Turn on block (blinking) cursor (254 83) 16
3.4.10 Turn off block (blinking) cursor (254 84) 16
3.4.11 Cursor left (254 76) 16
3.4.12 Cursor right (254 77) 16
4 Bar Graphs and Special Characters 16
4.1 Command List 17
4.1.1 Initialize wide vertical bar graph (254 118) 17
4.1.2 Initialize narrow vertical bar graph (254 115) 17
4.1.3 Draw vertical bar graph (25461 [column] [height]) 17
4.1.4 Initialize horizontal bar graph (254 104) 17
4.1.5 Draw horizontal bar graph (254 124 [column] [row] [dir] [length]) 17
4.1.6 Initialize large digits (254 110) 18
4.1.7 Place large digit 25435 [col] [digit] 18
4.1.8 Define custom character (254 78 [c] [8 bytes]) 18
5 Miscellaneous Commands 19
5.1 Command List 19
5.1.1 Clear display (254 88) 19
5.1.2 Set brightness (254 89 [brightness]) 20
5.1.3 Display on (254 66 [minutes]) 20
5.1.4 Display off (254 70) 20
5.1.5 General purpose output off (254 86) 20
5.1.6 General purpose output on (254 86) 20
5.1.7 Read module type 21
6 Appendix: Command Summary 21
6.1 General 21
6.2 Issuing Commands 21
6.3 On Numbers 22
6.3.1 ASCII Characters 22
6.4 Text Commands 23
6.5 Bar Graphs and Special Characters 24
6.6 Miscellaneous Commands 25
7 Appendix: Specifications 26
7.1 Specifications 26
7.2 Options 29
8 Appendix: Glossary 29

1 Introduction

The VFD2041 comes equipped with the following features;

- 20 column by 4 line text display
- Built in font with provision for up to 8 user defined characters
- Speeds from 1200 bps to a lighting fast 19.2 Kbps over RS-232
- Communication over RS-232 or I ${ }^{2} \mathrm{C}$
- Use of up to 16 modules on the same 2 wire $\mathrm{I}^{2} \mathrm{C}$ interface
- Software controlled brightness
- Display with configurable time out setting up to 180 minutes
- One general purpose output for a variety of applications
- Horizontal or vertical bar graphs
- Variable power options, +5 V or +7 V to +15 V
- Extended temperature option
- Fits Matrix Orbital's Dual PC Bay insert without any modifications

1.1 What to Expect From the VFD2041

The VFD2041 is designed as the display unit for an associated controller. The controller may be anything from a single board, special purpose micro-controller to a PC, depending on the application. This controller is responsible for what is displayed on the screen of the display.

The display provides a simple command structure to allow text and bar graphs to be displayed on the screen. Text fonts are built in, and use standard ASCII mapping. Provision is made for up to 8 user defined characters.

The screen is backlit for low light situations. Backlighting may be turned on or off under program control. Contrast is adjustable to compensate for differing lighting conditions and viewing angles.

A general purpose output allows the controller to switch an electronic or electro-mechanical device by issuing commands to the display unit. This can be used for controlling LEDs, relays, etc.

1.2 What Not to Expect From the VFD2041

The display does not include bitmap graphics capability, except that permitted by defining special characters. The display does not include a keypad interface.

1.3 Setup for Testing

Before setting up the application the user may want to try out the display. This is easily done with a PC. If not equipped with a dual bay PC mounting kit, the following will be required;

- A 4-pin power connector of the type used to connect $3.5^{\prime \prime}$ floppy drive. Take care not to connect the display to an unmodified spare power connector in a PC.
- A 5 V power supply.
- A PC with a spare RS-232 port (COM1 or COM2).
- A 9 or 25 pin RS-232 serial cable. If using a 25 conductor cable, a 9 to 25 pin adapter will be required.

Figure 1: Connections for Testing

1. Refer to the Figure above for the following steps.
2. Wire the connector to the power supply. On most connectors the RED lead will go to +5 V and the BLACK lead to GND.

NOTE The Manufacturer's Warranty becomes void if the unit is subjected to over-voltage or reversed polarity.
3. Connect the display to the PC using the serial cable and adapter if required. Make sure the RS-232 cable includes the required ground lead. There must be no voltage differential between the RS-232 ground and the power supply ground.
4. Connect the power connector, making sure that the +5 V goes to $\mathrm{V}+$. Turn on the power: the VFD backlight should come on and a blinking cursor should appear at top left.

1.4 Trying Out the VFD2041

The unit should be connected to power. The PC and display should be on. To experiment with typing text, run a PC terminal program, such as Hyperterm. Make sure it's configured to use the correct port. Set the baud rate to 19,200 . If characters are typed on the keyboard, they should now appear on the display screen. Text will wrap around to the next line when the end of a line has been reached.

2 Connections

2.1 Connector Pinout

Refer to the Figure below for this chapter.

Figure 2: Electrical Connections

The display has three connectors;

Table 1: Connectors \& Functions

Connector	Function
2 pin	General purpose output
4 pin	Power and I ${ }^{2} \mathrm{C}$ communications
DB-9F	RS-232 / power

2.1.1 Power Connections

Power is applied via pins 1 and 4. Power requirement for standard units is $+5 \mathrm{VDC} \pm 0.25 \mathrm{~V}$. Units with the wide voltage range option require 8-15 VDC.

Connector pinout is as follows;

Figure 3: Power Connector

Table 2: Connector Pinout

Pin 4	Ground
Pin 3	SDA $\left(\mathrm{I}^{2} \mathrm{C}\right.$ data) $/ \mathrm{Rx}$
Pin 2	SCL $\left(\mathrm{I}^{2} \mathrm{C}\right.$ clock $) / \mathrm{Tx}$
Pin 1	Vdc

2.1.2 Five Volt Modules

If the display is used in a PC it then becomes tempting to plug a spare power connector into the unit. Don't do this! Wiring for the PC power connector and that required for the display are different, as shown in the Figure below.

Figure 4: Wiring for 5V Modules

Matrix Orbital can supply an adapter cable designed for use with the display when it's installed in a PC. The cable is wired as shown in the Figure below.

NOTE This cable does not provide connections for $\mathrm{I}^{2} \mathrm{C}$.

Figure 5: Five Volt Power Cable

2.1.3 Wide Voltage Range Modules

NOTE Do not use this cable unless the display module has the "Wide voltage range" option (option V). Use of the 12 volt power cable with 5 volt modules will damage the module.

The 12 volt power cable is designed for use with wide voltage range display modules mounted in a PC. Wiring required for the 12 volt power connector is shown in the Figure below.

Figure 6: Wiring for 12V Modules

Matrix Orbital can supply an adapter cable designed to use with the display module when it's installed in a PC.

Figure 7: Twelve Volt Power Cable

2.1.4 Applying Power through the DB-9 Connector

Power may be provided to the module by pin 9 of the DB-9 connector instead of through the 4-pin SIP. If power is to be applied using the DB-9, it must be a regulated 5 Vdc supply.

NOTE This applies to wide voltage units (V and VPT extensions) as well as to standard 5 volt units.

Figure 8: DB-9 Power

To use pin 9 as the power source, the user must solder the 5 volt jumper pad beside the DB- 9 connector.

WARNINGS

- Do not apply power to both pin 9 AND the 4 pin SIP header.

2.2 RS-232 Communications

The RS-232 connector on the PC cable is wired so that a standard 'straight through' 9 pin D-sub cable may be used to connect the module to a standard serial port such as COM ports on PCs. Note that this device complies with the EIA232 standard in that it uses signal levels from $\pm 12 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$ and can be converted to TTL levels as well. The display is set at 19.2 Kbps default speed. Other settings are;

8 bits, no parity, 1 stop bit.

2.2.1 DB-9 Connections

A standard DB-9F is provided for RS-232 communications. Power may also be supplied via this connector if desired.

Figure 9: RS-232 Power Connector

Table 3: RS-232 Pinout

Pin Number	Direction	Description	VFD	Host
2	Data from VFD	Data out (VFD)	Tx	Rx
3	Data to VFD	Data in (VFD)	Rx	Tx
5	-	Ground	gnd	gnd

2.2.2 Alternate Serial Connection

An optional alternate connection header is provided to allow one cable for data and power. Two jumpers will have to be set into the RS- 232 position above the DB- 9 connector.

Figure 10: $\mathrm{I}^{2} \mathrm{C}$

Connector pinout is as follows;

Figure 11: Power Connector

Table 4: Connector Pinout

Pin 4	Ground
Pin 3	Rx
Pin 2	Tx
Pin 1	Vdc

2.2.3 TTL communications

The display can be talked to at TTL (logic 0 V to +5 V) levels. Three modifications have to be made. This will allow TTL communications through the 4-pin SIP header or the DB-9 connector.

Figure 12: $\mathrm{I}^{2} \mathrm{C}$

2.2.4 Configuring RS-232 and $\mathrm{I}^{2} \mathrm{C}$

RS-232 baud rate and $\mathrm{I}^{2} \mathrm{C}$ address are configured by means of jumpers.

Figure 13: RS-232 Jumpers

The module is supplied with jumpers J1 and J2 installed, which gives an RS-232 baud rate of 19200 and an $\mathrm{I}^{2} \mathrm{C}$ address of $0 \times 5 \mathrm{C}$.

- RS-232 port: J0, J1, J2 - control baud rate. RS-232 format is 8 N 1 (8 bits, no parity, one stop bit)
- $\mathrm{I}^{2} \mathrm{C}$ port: J0, J1, J2, J3 - sets slave peripheral address

Table 5: Serial Baud Rates

Baud Rate	Slave Address	J3	J2	J1	J0
1200	50 H	out	out	out	out
	52 H	out	out	out	in
2400	54 H	out	out	in	out
	56 H	out	out	in	in
9600	58 H	out	in	out	out
	5 H	out	in	out	in
19200	5 CH	out	in	in	out
	5 EH	out	in	in	in
1200	60 H	in	out	out	out
	62 H	in	out	out	in
2400	64 H	in	out	in	out
	66 H	in	out	in	in
9600	68 H	in	in	out	out
	6 AH	in	in	out	in
19200	6 CH	in	in	in	out
	6 EH	in	in	in	in

2.3 I ${ }^{2} \mathrm{C}$ Communications

$\mathrm{I}^{2} \mathrm{C}$ communications runs at 100 Kbps and supports up to 16 units on a single communications line. The $\mathrm{I}^{2} \mathrm{C}$ data line operates on 5 volt CMOS levels.

2.3.1 ACK

The idea of ACK is to indicate when the data has been received correctly. ACK does not indicate data incorrectly received. ACK simply fails to indicate when data is correctly received. Clearly, this is of limited usefulness and even less so with Matrix Orbital modules. Matrix orbital modules are not capable of failing to acknowledge an incorrectly received byte in response to that bytes transition. They are only capable of failing to acknowledge the bytes following the byte, which was not received. To fully understand the reasons for this one needs to understand something about how a Matrix Orbital module processes data. Basically the reason why a Matrix Orbital module might fail to receive a byte correctly is that it was unable to process the byte previous before the failed byte was transmitted. Because the module cannot possibly know that it would be unable to store the byte before the next byte was received it cannot know to not ACK. The reason for this situation in deference to situations one might be familiar with (i.e., memory chips, etc) is that the Matrix Orbital module employs a micro-processor to perform these data storage functions. A memory chip takes care of these things entirely with in hardware subsystems that operate at the same speed as the transmission themselves.

The display uses a standard Phillips 7bit address as defined by Phillips. However, Matrix Orbital specifies $I^{2} \mathrm{C}$ address in 8 bits. The 8th bit, least significant bit (LSB or Low Order Bit) of the 8bit address is read
/ write bit. If we take a standard Phillips 7bit address of 45hex this would be in binary 1000101. This is 7 bits. Matrix Orbital would describe the Phillips $\mathrm{I}^{2} \mathrm{C}$ address of 45 hex as 8 Ahex. The read address would be 8 Bhex.

For more information on Phillips $\mathrm{I}^{2} \mathrm{C}$ please visit;
http://www.ping.be/~ping0751/i2cfaq/i2cindex.htm
To communicate by $\mathrm{I}^{2} \mathrm{C}$ two jumpers have to be set into the $\mathrm{I}^{2} \mathrm{C}$ position above the $\mathrm{DB}-9$ connector.

Figure 14: $I^{2} \mathrm{C}$
Connector pinout is as follows;

Figure 15: Connector Pinout

Table 6: Connector Pinout

Pin 4	Ground
Pin 3	SDA ($\mathrm{I}^{2} \mathrm{C}$ data $)$
Pin 2	SCL $\left(\mathrm{I}^{2} \mathrm{C}\right.$ clock $)$
Pin 1	Vdc

2.4 General Purpose Output

The display has a general purpose output which can be used to control relays or other electronic devices. This allows external devices to be turned on or off using your PC or controller and software commands. The + terminal is connected to the module positive supply, the - terminal is connected through a 240 ohm current limiting resistor and the electronic switch to ground.

Figure 16: General Purpose Output

Maximum allowable current is 20 mA , which is enforced by the current limiting resistor. If the device being switched has a resistance of 240 ohms or more the corresponding resistor may be shorted. Solder a small jumper wire (wirewrap wire is good) between the two feedthrough holes.

Figure 17: Bypassing 240 ohm Resistor

NOTE The GPOs do not have any over current or over / under voltage protection so care must be taken when using them. For instance if the external device is a relay, it must be fully clamped using a diode and capacitor to absorb any generated back electro-motive force (EMF).

Figure 18: Clamping a Relay

3 Displaying Text

This chapter describes the various text display commands in detail. Before issuing commands to the VFD2041 please read sections 6.2 and 6.3.

3.1 General

Text is displayed on the VFD2041 using the built in 5×7 dot matrix font, in addition to up to 8 user defined characters.

3.2 The Built in Character Font

The display includes a built in 5×7 dot matrix font with the full range of ASCII characters plus a variety of extended characters.

Figure 19: Character Set
In addition to the built in characters, users may define up to 8 special characters which, once defined, occupy positions $0 x 00$ to $0 x 07$ in the above chart. The display does not have provision to download other fonts.

3.3 Writing Text to the Display

When the display receives a character, it displays that character at the position currently defined. The next character sent to the module then advances to the following position on the display. Characters are drawn using the built in font, and only characters defined in the font are actually displayed. Characters that are not defined by the built in font print as a space (i.e., the cursor is advanced for the next character). The position where text is to be inserted is a character location stored in the display's volatile memory and maintained internally by the display's firmware. This position is manipulated by the commands shown in the following section.

3.4 Text Commands

In this section commands are identified by their names and decimal values. Hex and ASCII equivalents are given in the summary.

3.4.1 Auto line wrap on (254 67)

Enables automatic line wrapping. Note that this is not 'word wrapping' and wraps may occur in the middle of a word. Note that if auto line wrap and auto scroll are both off (default) text will wrap from line 1 to line 3 then 2 then 4.

Factory default is OFF.

3.4.2 Auto line wrap off (254 68)

Disables automatic line wrapping.

3.4.3 Auto scroll on (254 81)

When auto scrolling is on, it causes the display to shift the entire display's contents up to make room for a new line of text when the text reaches the scroll position (the bottom right character position).

3.4.4 Auto scroll off (254 82)

When auto scrolling is disabled, text will wrap to the top left corner of the display area. Existing text in the display area is not erased before new text is placed. A series of 'spaces' followed by a "Cursor home" command may be used to erase the top line of text.

3.4.5 Set cursor position (254 71 [column] [row])

This command sets the cursor position (text insertion point) to the [column] and [row] specified. Columns have values from 1 to 20 (0×01 to 0×14) and rows have values of 1 to 4 (0×01 to 0×04).

3.4.6 Send cursor home (254 72)

This command moves the cursor position (text insertion point) to the top left of the display area.

3.4.7 Turn on underline cursor (254 74)

Turns on the underline cursor. The cursor shows the current text insertion point. Both underline and blinking cursors may be turned on or off independently. The cursor is off by default.

3.4.8 Turn off underline cursor (254 75)

Turns off the underline cursor. Does not affect the blinking block cursor.

3.4.9 Turn on block (blinking) cursor (254 83)

Turns on the blinking block cursor. The cursor shows the current text insertion point. Both blinking and underline cursors may be turned on or off independently. The cursor is off by default.

3.4.10 Turn off block (blinking) cursor (254 84)

Turns off the blinking block cursor. Does not affect the underline cursor.

3.4.11 Cursor left (254 76)

Moves the cursor one position to the left but does not erase any character that may be in that position. Note that this command moves the text insertion point even if the cursor is turned off.

NOTE A 'destructive backspace', which erases the character to the left of the original position, may be done by issuing the following sequence: cursor left, space, cursor left.

3.4.12 Cursor right (254 77)

Moves the cursor one position to the right but does not erase any character that may be in that position. Note that this command moves the text insertion point even if the cursor is turned off.

4 Bar Graphs and Special Characters

The display includes the ability to draw bar graphs (either horizontal or vertical), large numbers, and allows users to define up to eight special characters. Eight characters (ASCII values 0x00 to 0x07) are set aside for use with bar graphs, user defined characters, and large digits. Since the same 8 characters are used for each function, the functions may not be used simultaneously. The characters may be defined or redefined at any time by issuing the commands shown in this section. Once defined, they may be used either
by means of the bar graph commands, or by simply issuing one of the ASCII values $0 x 00$ to $0 x 07$ (which is not prefixed by the command byte, 254).

4.1 Command List

4.1.1 Initialize wide vertical bar graph (254 118)

This command defines the 8 special / user characters to be blocks suitable for use in drawing wide (5 pixel) vertical bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of vertical bar graphs may be drawn unless the characters are redefined by another command.

4.1.2 Initialize narrow vertical bar graph (254 115)

This command defines the 8 special / user characters to be blocks suitable for use in drawing narrow (2 pixel) vertical bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of vertical bar graphs may be drawn unless the characters are redefined by another command.

4.1.3 Draw vertical bar graph (254 61 [column] [height])

Draws a vertical bar graph in [column] having a height of [height] pixels. The height may range from 0 to 20 ($0 x 00$ to $0 x 14$) pixels. The necessary characters must first be initialized by either of the commands shown in section 5.1.1 or 5.1.2, which will determine the width of the graph drawn. Graph may be erased by drawing a bar graph of height $=0$ in the same column.

4.1.4 Initialize horizontal bar graph (254 104)

This command defines the 8 special / user characters to be blocks suitable for use in drawing horizontal bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of horizontal bar graphs may be drawn unless the characters are redefined by another command.

4.1.5 Draw horizontal bar graph (254 124 [column] [row] [dir] [length])

Draws a horizontal bar graph in [row] starting at [column] with a length of [length] pixels. [row] may have a value of 0×01 or 0×02, column may range from 0×01 to 0×14 and length may be from 0×00 to 0×64 (0 to 100) if the graph can extend the full width of the screen. Each column is 5 pixels wide (spaces between the columns don't count).
[dir] specifies the direction: $0 x 00$ goes from left to right, $0 x 01$ goes from right to left.

4.1.6 Initialize large digits (254 110)

This command defines the 8 special / user characters to be blocks suitable for use in drawing large digits. Any previously existing definitions will be lost. Once this command has been issued, any number of large characters may be placed until the characters are redefined by another command.

4.1.7 Place large digit 25435 [col] [digit]

This command allows the large digits to be drawn on the display screen. Numbers of almost full display height may be placed along side regular text on four row displays. The column number has a maximum value which is less than the display width because the digits are all three columns wide.

Before using this command, the "Initialize large digits" command must be issued to define the blocks necessary to make up the digits. If regular text and large digits are mixed on one screen, the user should always set the display cursor position before placing regular text because the creation of a large digit will leave the cursor position to the bottom right of the large digit and not at the last regular text write position.
[col] can have values from 0×01 to 0×12 (1 to 18). [digit] has values from 0×00 to 0×09 (0 to 9).

4.1.8 Define custom character (254 78 [c] [8 bytes])

The display allows up to 8 user defined (custom) characters. These characters occupy the first 8 ($0 x 00$ to $0 x 07$) places in the character set.

Custom characters occupy a 5×8 pixel matrix. Built in characters are 5×7 : the bottom row of pixels is normally reserved for the underline cursor. The underline cursor should be turned off if the bottom row of pixels forms part of a custom character.

The characters are defined by issuing the command 25478 [c] followed by 8 bytes to define the character. [c] is the character number (0×00 to 0×07). The 8 bytes are mapped as shown below;

Table 7: 8 Byte Map

MSB LSB										
$*$	$*$	$*$	1	2	3	4	5	Data Byte 1		
$*$	$*$	$*$	6	7	8	9	10	Data Byte 2		
$*$	$*$	$*$	11	12	13	14	15	Data Byte 3		
$*$	$*$	$*$	16	17	18	19	20	Data Byte 4		
$*$	$*$	$*$	21	22	23	24	25	Data Byte 5		
$*$	$*$	$*$	26	27	28	29	30	Data Byte 6		
$*$	$*$	$*$	31	32	33	34	35	Data Byte 7		
$*$	$*$	$*$	36	37	38	39	40	Data Byte 8		

A "1" bit indicates an on (black) pixel, a "0" bit indicates an off (clear) pixel.
Once defined, a character is displayed simply by issuing a value ($0 x 00$ to $0 x 07$) corresponding to the character number. The character will be laid out as follows;

Table 8: Character Values

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
36	37	38	39	40
Cursor Line				

NOTE Note: Custom characters will be erased if any of the "Initialize bar graph" commands are issued.

Example of a degree symbol:

```
txUart.sendByte(0xFE); //command prefix
txUart.sendByte('N'); //custom character command
txUart.sendByte(0x00); //custom character value 0-7
txUart.sendByte(12); //8 bytes to create
txUart.sendByte(18); //the custom character
txUart.sendByte(18);
txUart.sendByte(12);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0x00);//display custom character 0
```


5 Miscellaneous Commands

The commands listed in this chapter don't readily fit in any of the other categories, or are used in more than one category.

5.1 Command List

5.1.1 Clear display (254 88)

This command clears the display and resets the text insertion point to the top left of the screen.

5.1.2 Set brightness (254 89 [brightness])

This command sets the display's brightness to [brightness], where [brightness] is a value between $0 x 00$ and 0×03 (between 0 and 3) according to the table below.

Table 9: Brightness Settings

Hex Values	Brightness
0×00	100%
0×01	75%
0×02	50%
0×03	25%

Lighting conditions will affect the actual value used for optimal viewing. Brightness is set to 100% by default.

5.1.3 Display on (254 66 [minutes])

This command turns on the display for a time of [minutes] minutes. If [minutes] is zero (0), the display will remain on indefinitely.

NOTE The factory default for display is on.

5.1.4 Display off (254 70)

This command turns the display off.

5.1.5 General purpose output off (254 86)

This command turns OFF any of the general purpose outputs. [gpo \#] is 1 to 8 .

NOTE OFF means that the GPO pin floats (high impedance).

5.1.6 General purpose output on (254 86)

This command turns ON any of the general purpose outputs. ON means that the output is pulled low (ground via 240 ohms).

5.1.7 Read module type

This command will return, over the RS-232 interface in TTL levels only, the model type value of the module. This command returns a 1-byte hex value. Values for various modules at the time of this publication are as follows;

Table 10: Module Values

VFD0821-0x01	VFD2021-0x03	VFD2041-0x05
VFD4021-0x06	VFD4041-0x07	LK202-25-0x08
LK204-25-0x09	LK404-55-0x0A	VFD2021-0x0B
VFD2041-0x0C	VFD4021-0x0D	VK204-25PC - 0x0E
VK204-25-0x0F	GLC12232-0x10	GLC24064-0x13
GLK24064-25-0x15	GLK12232-25-0x22	LK404-AT -0x31
LK402-12-0x33	LK162-12-0x34	LK204-25PC -0x35

6 Appendix: Command Summary

6.1 General

The operation of the display is controlled by a simple and consistent command set.
Commands control;

- Text display
- Graphics
- Display keypad interface
- Miscellaneous operating parameters

This chapter includes summary tables of all commands.

6.2 Issuing Commands

Commands are issued to the display by the controller. In a test setup, commands can be issued to the display by means of a BASIC program, using the chr\$() function. In the tables below, we've shown commands in hex, ASCII and decimal form. All commands begin with the prefix character 0xFE (254 decimal). These commands are issued on the serial communications link ($\mathrm{I}^{2} \mathrm{C}$ or RS-232) at the currently defined baud rate.

For example (using BASIC in a test setup), the user could issue the command to clear the screen on the display by including the line;

```
PRINT#1, chr$(254); chr$(88)
```

in the BASIC program.

```
ZComm1->WriteCommByte(0xfe);
ZComm1->WriteCommByte('X');
```


6.3 On Numbers

Like all computerized devices, the display operates with commands and values in the form of binary numbers. These binary numbers are arranged in 8 digit (i.e., 8 bit) groups called bytes. The decimal value of a byte may have any value from 0 to 255 . Bytes are usually specified in either decimal or hexadecimal (base 16) form for convenience, since binary numbers are confusing to deal with directly. Hexadecimal (hex) numbers are particularly convenient because exactly two hexadecimal digits make up one byte, each hex digit representing 4 binary digits (4 bits) as shown here;

Table 11: Hex Value Table

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	A	10
0011	3	3	1011	B	11
0100	4	4	1100	C	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Based on the table, the byte 01001011 can be represented in hex as 4 B , which is usually written as any of $4 \mathrm{Bh}, 4 \mathrm{BH}, 4 \mathrm{~B}$ hex or 0 x 4 B . The numbers can also be expressed in decimal form if preferred.

6.3.1 ASCII Characters

Since computers deal internally with numbers only, but externally with both letters and numbers, several schemes were developed to 'map' written characters to numeric values. One such scheme has become universal, the American Standard Code for Information Interchange, or ASCII. ASCII tables are readily available from a number of sources. A few examples will do here;

Table 12: Example of an ASCII Table

Letter / Number	Decimal Value	Hex Value
A	65	41
a	97	61
0	48	30
9	57	39

This gives rise to the possibility of confusion when parameters are being set on the display. For example, the GPO ON and OFF commands use a number to indicate which GPO is being controlled. We're told that acceptable values are 0 to 8 . All such parameters must use numeric values (i.e., the actual byte values). If we send the ASCII number 0 by mistake it will actually give the value 48 decimal (30 hex) to the parameter, which is wrong.

In the tables given in the following sections ASCII characters are shown as ' A ', with single quotes.

6.4 Text Commands

Syntax in the tables below is given in hex, decimal and decimal with ASCII, in that order, one per line.

Table 13: Text Commands

Command	Syntax	Default	Notes
Auto line wrap on	$\begin{aligned} & \hline \text { FE } 43 \\ & 25467 \\ & 254{ }^{\prime} C^{\prime} \\ & \hline \end{aligned}$	off	Enables line wrapping (not word wrap).
Auto line wrap off	FE 44 25468 254 'D'	off	Disables line wrapping.
Auto scroll on	$\begin{aligned} & \text { FE 51 } \\ & 25481 \\ & 254 \text { 'Q' } \end{aligned}$	off	Enables scroll at bottom of screen. Text will push display up one line to make room for new line.
Auto scroll off	FE 52 25482 254 'R'	off	Disables auto scroll. Text will wrap to top left and overwrite existing text.
Set cursor position	FE 47 [col][row] 25471 [col][row] 254 'G' [col][row]	n/a	Moves cursor to the specified column and row. The cursor marks the text insertion point in this and all commands.
Send cursor home	FE 48 25472 254 'H'	n / a	This command moves the cursor to the top left of the display area.

Command	Syntax	Default	Notes
Underline cursor on	$\begin{aligned} & \text { FE 4A } \\ & 25474 \\ & 254 \text { 'J' } \end{aligned}$	off	Turns on the underline cursor.
Underline cursor off	$\begin{aligned} & \text { FE 4B } \\ & 25475 \\ & 254{ }^{\prime}{ }^{\prime} \end{aligned}$		Turns off the underline cursor.
Block cursor on	$\begin{aligned} & \hline \text { FE 53 } \\ & 25483 \\ & 254{ }^{\prime} S^{\prime} \\ & \hline \end{aligned}$	off	Turns on the blinking block cursor.
Block cursor off	FE 54 25484 254 'T'		Turns off the blinking block cursor
Cursor left	FE 4C 25476 254 'L'	n/a	Moves the cursor one position to the left. If the cursor is already at the beginning of a line it will move to the end of the other line.
Cursor right	$\begin{aligned} & \text { FE 4D } \\ & 25477 \\ & 254 \text { ' }^{\prime} \text { ' } \end{aligned}$	n/a	Moves the cursor one position to the right. If the cursor is already at the end of a line it will move to the beginning of the other line.

6.5 Bar Graphs and Special Characters

The commands in this section are used to define and display bar graphs and special characters.

Table 15: Bar Graphs and Special Characters

Command	Syntax	Notes
Initialize thick vertical bar	FE 76	Initializes the user character set to
graph	254118	make wide vertical bar graphs.
	254 'v' $^{\prime}$	

Command	Syntax	Notes
Initialize thin vertical bar graph	$\begin{aligned} & \text { FE } 73 \\ & 254115 \\ & 254 \text { 's' } \end{aligned}$	Initializes the user character set to make narrow vertical bar graphs.
Initialize horizontal bar graph	$\begin{aligned} & \hline \text { FE } 68 \\ & 254104 \\ & 254 \text { 'h' } \end{aligned}$	Initializes the user character set to make horizontal bar graphs.
Draw vertical bar graph	FE 3D [col][length] 25461 [coll][length] 254 ' $=$ ' [col][length]	Draws a vertical bar graph at column [col] of length [length]. Length is measured in pixels (0×00 to 0 x 14). User must first use the ' v ' or 's' command to initialize characters.
Draw horizontal bar graph	FE 7C [c][r]][d][length] 254124 [c][r]][d][length] $254{ }^{\prime} \mathrm{l}$ ' $[\mathrm{c}][\mathrm{r}][\mathrm{d}][$ length $]$	Draws a horizontal bar graph starting at column [c] on row [r] with direction [d] (0 is right, 1 is left) of length [length]. Length is measured in pixels (0×00 to 0×64 if starting in column 1). User must first use the 'h' command to initialize characters.
Initialize large digits	$\begin{aligned} & \text { FE 6E } \\ & 254110 \\ & 254 \text { 'n' } \end{aligned}$	Initializes the user character set to make large digits.
Place large digits	$\begin{aligned} & \text { FE } 23 \text { [coll] [digit] } \\ & 25423 \text { [col] [digit] } \\ & 254 \text { '\#' [col] [digit] } \end{aligned}$	Place large digit number [digit] in column [col] of the display. Cursor moves to bottom right of large digit. [digit] is 0×00 to $0 \times 09,[$ col] is 0×01 to 0×12 (i.e., 1 to 18 decimal).
Define custom character	FE 4E [c][8 bytes] 25478 [c][8 bytes] 254 ' N ' [c][8 bytes]	Defines one of 8 custom "user" characters. Character number is [c] between 0×00 and 0×07.

6.6 Miscellaneous Commands

Table 17: Miscellaneous Commands

Command	Syntax	Default	Notes
Clear display	$\begin{aligned} & \text { FE } 58 \\ & 25488 \\ & 254 \text { ' } \end{aligned}$	n/a	Clears screen of text and graphics, places text cursor at top left.

Command	Syntax	Default	Notes
Display on	$\begin{aligned} & \text { FE } 42 \text { [minutes] } \\ & 25466 \text { [minutes] } \\ & 254 \text { 'B' [minutes] } \end{aligned}$	on	Display will stay on for [minutes]. If [minutes] $=0$ display will stay on permanently. Maximum value for [minutes] is 100.
Display off	FE 46 25470 254 ' F '	on	Turns off display
Set Brightness	$\begin{aligned} & \text { FE } 99 \text { [brightness] } \\ & 254153 \text { [brightness] } \end{aligned}$	0xFF255	Sets display brightness. Brightness is a value between 0 and 255 (hex 0 to FF). Larger $=$ brighter.
General purpose output on	$\begin{aligned} & \hline \text { FE } 57 \text { [gpo \#] } \\ & 25487 \text { [gpo \#] } \\ & 254 \text { 'W' [gpo \#] } \\ & \hline \end{aligned}$	off	Turns general purpose output ON.
Read module type	$\begin{aligned} & \text { FE } 37 \\ & 25455 \\ & 254{ }^{\prime} 7 \end{aligned}$	see table	This command returns a 1-byte hex value.

7 Appendix: Specifications

7.1 Specifications

Table 19: Environmental Specifications

	Standard Temperature	Extended Temperature
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Relative Humidity	90% max non-condensing	90% max non-condensing

Table 20: Electrical Specifications

Supply Voltage	$4.75-5.25$ Vdc (optional 8-15 VDC)
Supply Current	11 mA typical

Table 21: Optical Characteristics

Number of Characters	$80(20$ characters by 4 lines $)$
Matrix format	5×7 with underline
Display Area	$76.3 \times 25.20 \mathrm{~mm} \mathrm{XxY}$
Character Size	$2.95 \times 4.75 \mathrm{~mm}(\mathrm{XxY})$, not including underline
Character Pitch	3.55 mm
Line pitch	5.35 mm
Dot Size	$0.55 \times 0.55 \mathrm{~mm}(\mathrm{XxY})$
Dot Pitch	$0.60 \times 0.60 \mathrm{~mm}(\mathrm{XxY})$
Color of Illumination	Yellow Green

WARNINGS

(1)

- Heavy shock of more then 100 G , thermal shock greater then $10^{\circ} \mathrm{C}$ / minute, direct hit with a hard material to the glass surface (especially to the exhaust pipe) may CRACK the glass.
- Steady repeating of a static message displaying, longer than 5 hours in a day may cause a phosphor burnout problem.

Figure 20: Physical Layout

7.2 Options

Table 22: Options Available on VFD2041

Inverse Blue VFD	WB
Inverse Yellow VFD	IY
White backlight with Gray glass (Ice Blue)	GW
Extended Temperature	E
Wide Voltage	V
Wide Voltage with Efficient Switching Power Supply	-VPT

8 Appendix: Glossary

Table 23: Appendix: Glossary

ASCII	American Standard Code for Information Interchange. A 7 bit binary code representing the English alpha- bet, decimal numbers and common punctuation marks. Also includes control characters such as carriage re- turn or end of text. An 8 bit superset of the standard ASCII codes is often used today to include foreign characters and other symbols. These supersets are of- ten called extended ASCII character sets.
Baud Rate	The (data and signaling) bit transmission rate of an RS- 232 device.
Binary Number	A number written using binary notation which only uses zeros and ones
Bit	The smallest unit of information a computer can work with. Each bit is either 0 or 1. Binary digit.
Bitmap	A representation, consisting of rows and columns of dots, of a graphics image in computer memory. The value of each dot (whether it is filled in or not) is stored in one or more bits of data.
Byte	A grouping of eight binary bits
Configuration	The way a system is set up, or the assortment of com- ponents that make up the system. Configuration can refer to either hardware or software, or the combina- tion of both.

Controller	The micro-controller or PC used to control the Matrix Orbital display unit
DB-9	The designation of a connector used in the RS-232 in- terface: 9 pin connector
Firmware	Software (programs or data) that has been written onto read-only memory (ROM). Firmware is a combina- tion of software and hardware. ROMs, PROMs and EPROMs and flash EEPROMs that have data or pro- grams recorded on them are firmware.
Font	A design for a set of characters. A font is the combina- tion of typeface and other qualities, such as size, pitch, and spacing.
Font Metric	A definition of where font is to be placed, such as mar- gins and spacing between characters and lines.
Hexadecimal	Refers to the base-16 number system, which consists of 16 unique symbols: the numbers 0 to 9 and the let- ters A to F. For example, the decimal number 15 is represented as F in the hexadecimal numbering sys- tem. The hexadecimal system is useful because it can
represent every byte (8 bits) as two consecutive hex-	
adecimal digits. It is easier for humans to read hex-	
adecimal numbers than binary numbers.	

Scroll	To view consecutive lines of data on the display screen. The term scroll means that once the screen is full, each new line appears at the bottom edge of the screen and all other lines move up one position.
Serial Number	A number that is one of a series and is used for identi- fication of the module
Serial Port	A port, or interface, that can be used for serial commu- nication, in which only 1 bit is transmitted at a time.
Version Number	This refers to the firmware revision number of the module.
Volatile Memory	Temporary memory. Once the power supply is turned off volatile memory is then erased.

